

- 1 Work out each of these using a vertical method.
 - a 34 b 29 c 56 d 67 <u>×6</u> <u>×8</u> <u>×7</u> <u>×9</u>
 - **e** 43 m × 4 **f** 75 g × 7 **g** 84 min × 6 **h** 67 cm × 8
- 2 Luca and Molly worked out 856 × 7 in different ways.

Decide if the area method would have been more efficient. You could race a partner to see which is faster.

Which way do you like better? Why?

- 3 Find the answers to these using a written strategy.
 - Scarlett invited 26 people to her birthday party.
 She ordered six pieces of pizza for each of them.
 How many pieces did she order?
 - **b** The average amount of waste each person produces in a year is 78 kg. How much waste is this for a family of five?
- **4** Work out the answers to these using a written method.

α	136 × 7	b	342 × 8	С	269 × 5	d	248 × 6
е	58 × 79	f	678 × 6	g	48 × 73	h	64 × 83
i	2387 × 4	j	3987× 6	k	6407 × 8	I.	4873 × 3
m	58 × 62	n	176 × 12	ο	384 × 12	р	564 × 32

- 5 A classroom at Jake's school needs some new furniture.
 - **a** Work out the cost to buy 8 chairs and 4 desks delivered from each of these places.

b Which is cheaper and by how much?

NC7-27

SUPPLEMENTARY STUDENT MATERIAL - YEAR 7

NC7-55

Algorithms and flow charts

A flow chart is a type of algorithm that shows a sequence of steps and decisions.

Example

This flowchart can be used to find the value of $2(4 + 6) - 3^2$ using the order of operations **GEMA**.

Activity

NC7-56

1 Show, using the flow chart above, the value of these.

a	4 ² + (5 × 7)	b	5(12 - 6) + 16
С	(9 - 5) ² - (9 ÷ 3)	d	4(32 - 12 × 2)
е	9 ² - 5 ² × 2	f	38 - 4 ² + (12 - 5)

- 3 A boat was heading SE. It turned clockwise and headed south. Through what angle did it turn?
- 4 This table shows the take off direction and final heading of some planes. Through what clockwise angle did each turn?

	Take off direction	Final heading
a NZ 537	SE	W
b NZ 042	NE	NW
c NZ 864	SW	Ν
d NZ 324	W	SW

Investigation

Investigate the navigation techniques of Māori and Pasifika voyages for locating position and finding the direction of travel.

ANSWERS

NC7–1 Powers of ten Activity **1 a** 100 **b** 10000 **c** 10 d 1000 f 1000 000 000 e 100 000 000 g 100 000 000 000 **d** 10⁵ 9 **a** 10³ **b** 10⁶ c 10²

g 10¹ h 10¹⁰ **f** 10⁹ **e** 10⁷

NC7-2 Powers of ten. Ordering whole numbers using powers of ten cont.

- 3 a thirty-seven million.
 - **b** five million six hundred and twenty five thousand. c one million forty-eight thousand five hundred and seventy-six.
 - **d** thirty million two hundred and seventy-one thousand.
 - e one hundred and fourteen million one hundred thousand.
- **4** a four thousand three hundred.
 - **b** two thousand seven hundred.
 - c five thousand two hundred and sixty-two.
 - **d** one hundred and seven thousand.
 - e one thousand four hundred and twenty-seven million.
 - f one hundred and sixty.
 - g two thousand seven hundred and ten.
 - **h** four thousand four hundred and ninety-seven million

Puzzle

426.315

NC7-3 Ordering whole numbers using powers of ten cont. .. Activity

- **b** $6.5 \times 10^2 \text{ MB}$ **c** 8.2×10^2 m **1** a 160 L f $8.9 \times 10^6 \,\mathrm{m\ell}$ **d** 50 kg e 53 000 g
 - **g** 4.2×10^7 km **h** 8 600 000 cm **i** 0.063×10^4 L
 - $j 0.0047 \times 10^{6} \text{ cm}$
- **2** a 0.08×10^3 , 8.4×10^1 , 8.6×10^2
 - **b** 0.54×10^3 , 560 $\times 10^1$, 52 $\times 10^2$
 - **c** 1.8 ×10³, 0.17 × 10⁵, 190 000
 - **d** 0.43×10^2 , 4.2×10^2 , 4400
 - e 42×10^3 , 45 000, 4.6×10^4 , 0.43×10^7
 - **f** $0.27 \times 10^{6}, 28 \times 10^{4}, 2\,700\,000, 2.8 \times 10^{6}$
 - **g** 8.0 ×10⁵, 0.81 × 10⁶, 7 900 000, 0.08 × 10⁸
- 3 **a** 5200 L, $5 \cdot 3 \times 10^2$ L, $0 \cdot 54 \times 10^2$ L
 - **b** 8300 m, 0.8×10^4 m, 8.2×10^2 m
 - **c** 104 000 m, 0.4×10^5 m, 1.4×10^2 m
 - **d** 31 000 cm, 0.3×10^5 cm, 31×10^3 cm
 - e 7 600 000 m ℓ , 7.9 × 10⁵ m ℓ , 7.8 × 10⁵ m ℓ , 0.7 × 10⁶ m ℓ **f** 9.9×10^6 g, 99×10^4 g, $980\ 000$ g, 0.9×10^5 g
 - g 56 000 km², 58 \times 10² km², 5.4 \times 10³ km², 05 \times 10⁴ km²
- **4** a Mercury **b** Mount Manaslu **c** Kariba Dam

NC7-4	Highest common factor (HCF)	••••••
Activity		

1	a 4	b 8	c 5	d 3	e 4	f 4
	g 5	h 3	i 4	j 16	k 11	15
	m 25	n 6	o 20	p 25		
2	a 8	b 6÷	$8, \div 8, \frac{2}{7}$	c $\frac{2}{7}$		
3	a $\frac{2}{3}$	b $\frac{3}{4}$	c $\frac{2}{5}$	d $\frac{3}{4}$	e $\frac{2}{3}$	f $\frac{4}{9}$
	$\frac{5}{8}$	h $\frac{1}{3}$	$i \frac{5}{9}$	$\frac{2}{5}$	k $\frac{1}{4}$	$1 \frac{4}{9}$
	m $\frac{1}{4}$	$n \frac{2}{5}$	$\frac{1}{5}$	$\frac{3}{4}$		

4 a 1 **b** No, because the HCF of both numbers is 1.

NC7–5 Lowest common multiple (LCM)													
A	tiv	ity											
1	a	6	b	20	С	15	d	24	е	35	f	36	
	g	12	h	60	i	70	j	54	k	21	1	40	
	m	24	n	45	0	30	р	72					
					6	10	16						
2	а	15		b	15 +	15 =	15						
		1		11		4		7		18			
3	a	1 6	b	20	С	1_{15}	d	1_{12}	е	35			
		29		1		23		1		21			
	f	36	g	4	h	60	i	70	j	54			
		. 2		37		11		16		33			
	k	1 24		10	m	0.1	n	1 75	•	<u> </u>			

NC7–6 Squares and square roots Discussion

 $m \frac{11}{24}$

1

• The numbers 1, 4, 9 and 16 can all be represented by a square of dots or small squares.

0

• The sides of a square are all the same length. To find the area of a square you multiply the lengths of two sides together which is the same as squaring a number.

Activity

1	a	16 squares	b	36 squares	с	49 squares
	d	64 squares	е	81 squares	f	1 square
	g	100 squares	h	4 squares	i	9 squares
	j	144 squares	k	256 squares	1	400 squares
2	a	30 ²	b	11 ²	с	x^2

NC7–7 Squares and square roots cont.

- **3** a 625 **b** 3969 **c** 5.76
 - e 0.25 **d** 161.29 f 0.005776
- 4 Dillon is not correct. Numbers greater than 1 when squared get bigger and numbers less than 1 when squared get smaller.

Total area =
$$25 + 16$$

= 41 m^2
 $5 4$
The courtyard with side 9 m

has the greater area.

- **b** The square of the sum of 3 and 5 is bigger.
- **7 a** 1² = 1

 $2^2 = 1 + 3$

- $3^2 = 1 + 3 + 5$
- $4^2 = 1 + 3 + 5 + 7$

$$5^2 = 1 + 3 + 5 + 7 + 9$$

$$6^2 = 1 + 3 + 5 + 7 + 9 + 11$$

- **b** 27² is the sum of the first 27 odd numbers.
- **8 a** 1 **b** 3(1, 2, 4)
 - **c** 3(1, 3, 9) **d** 3(1, 5, 25)
 - **f** 9 (1, 2, 3, 4, 6, 9, 12, 18, 36) **e** 3 (1, 7, 49)
 - **g** 9 (1, 2, 4, 5, 10, 20, 25, 50, 100)
 - **h** 5 (1, 2, 4, 8, 16) i 7 (1, 2, 4, 8, 16, 32, 64)
 - 5(1, 2, 3, 9, 81)
 - **k** The factors are always 1, the number itself and a prime number. For example 9 has factors of 1, 3 and 9 and 3 is a prime number.